Abstract

Aim: The purpose of this study is to investigate the relationship between contrast media volume and patient lung volume when employing a patient-specific contrast media formula during pulmonary computed tomography angiography (CTA).


Materials and methods: IRB approved this retrospective study. CTA of the pulmonary arteries was performed on 200 patients with suspected pulmonary embolism (PE). The contrast media volume (CMV) was calculted by employing a patient-specific contrast formula. Lung volume was quantified employing semi-automated lung software that calculated lung volumes (intellispace -Philips). The mean cross-sectional opacification profile of central and peripheral pulmonary arteries and veins were measured for each patient and arteriovenous contrast ratio (AVCR) calculated for each lung segment.  Mean body mass index (BMI) and lung volume were quantified. Receiver operating (ROC) and visual grading characteristics (VGC) measured reader confidence in emboli detection and image quality respectively. Inter and intra-observer variations were investigated employing Cohen’s kappa methodology.


Results: Results showed that the mean pulmonary arterial opacification of the main pulmonary circulation (343.88±73HU), right lung; upper (316.51±23HU), middle (312.5±39HU) and lower (315.23±65HU) lobes and left; upper (318.76±83HU), and lower (321.91±12HU) lobes. The mean venous opacification of all pulmonary veins was below 182±72HU. AVCR was observed at all anatomic locations (p<0.0002) where this ratio was calculated. Moreover, larger volumes of contrast significantly correlated with larger lung volumes (r=0.89, p<0.03) and radiation dose (p<0.03). VGC and ROC analysis demonstrated increased area under the curve: 0.831 and 0.99 respectively (p<0.02). Inter-observer variation was observed as excellent (κ = 0.71).


Conclusion: We conclude that increased CMV is significantly correlated to increased patient lung volume and radiation dose when employing a patient-specific contrast formula. The effects patient habitus is highlighted.


References

  1. Saade C, Bourne R, El-Merhi F, Somanathan A, Chakraborty D, Brennan P. An optimised patient-specific approach to administration of contrast agent for CT pulmonary angiography. Eur Radiol. 2013;23(11):3205-12.
  2. Salameh E, Saade C, Oweis GF. Experimental Insight into the Hemodynamics and Perfusion of Radiological Contrast in Patent and Non-patent Aortic Dissection Models. Cardiovasc Eng Technol. 2019;10(2):314-28.
  3. Saade C, Hamieh N, Deeb IA, Haddad M, Abi-Ghanem AS, Ghieh D, et al. An augmented patient-specific approach to administration of contrast agent for CT renal angiography. Int Braz J Urol. 2019;45.
  4. Saade C, Chokr J, Naffaa L, Faraj W, Shamseddine A, Mukherji D, et al. Reduced Contrast Volume and Radiation Dose During Computed Tomography of the Pancreas: Timing-Specific Contrast Media Protocol. Acad Radiol. 2019;26(4):480-8.
  5. Zein-El-Dine S, Bou Akl I, Mohamad M, Chmaisse A, Chahwan S, Asmar K, et al. Split-bolus contrast injection protocol enhances the visualization of the thoracic vasculature and reduced radiation dose during chest CT. Br J Radiol. 2018;91(1092):20180509.
  6. Saade C, Mohamad M, Kerek R, Hamieh N, Alsheikh Deeb I, El-Achkar B, et al. Augmented Quadruple-Phase Contrast Media Administration and Triphasic Scan Protocol Increases Image Quality at Reduced Radiation Dose During Computed Tomography Urography. J Comput Assist Tomogr. 2018;42(2):216-21.
  7. Saade C, Mayat A, El-Merhi F. Exponentially Decelerated Contrast Media Injection Rate Combined With a Novel Patient-Specific Contrast Formula Reduces Contrast Volume Administration and Radiation Dose During Computed Tomography Pulmonary Angiography. J Comput Assist Tomogr. 2016;40(3):370-4.
  8. Saade C, El-Merhi F, El-Achkar B, Kerek R, Vogl TJ, Maroun GG, et al. 256 Slice Multi-detector Computed Tomography Thoracic Aorta Computed Tomography Angiography: Improved Luminal Opacification Using a Patient-Specific Contrast Protocol and Caudocranial Scan Acquisition. J Comput Assist Tomogr. 2016;40(6):964-70.
  9. Saade C, Al-Hamra S, Al-Mohiy H, El-Merhi F. Contrast Media Delivery in the Assessment of Anomalous Left Coronary Artery From the Pulmonary Artery. Radiol Technol. 2016;87(5):490-4.
  10. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med. 2000;26(7):857-69.
  11. Gimenez S, Teixeira ML, Myashiro R, Carmona MJ, Auler JO, Jr., Malbouisson LM. [Computed tomography in pulmonary evaluation of children with acyanotic congenital heart defect and pulmonary hyperflow]. Rev Bras Anestesiol. 2009;59(5):545-57.
  12. Saade C, Bourne R, El-Merhi F, Somanathan A, Chakraborty D, Brennan P. An optimised patient-specific approach to administration of contrast agent for CT pulmonary angiography. European radiology. 2013;23(11):3205-12.
  13. Saade C, Bourne R, Wilkinson M, Brennan P. Contrast medium administration and parameters affecting bolus geometry in multidetector computed tomography angiography: an overview. Journal of Medical Imaging and Radiation Sciences. 2011;42(3):113-7.
  14. Saade C, Mayat A, El-Merhi F. Exponentially decelerated contrast media injection rate combined with a novel patient-specific contrast formula reduces contrast volume administration and radiation dose during computed tomography pulmonary angiography. Journal of computer assisted tomography. 2016;40(3):370-4.
  15. Hittmair K, Fleischmann D. Accuracy of predicting and controlling time-dependent aortic enhancement from a test bolus injection. Journal of computer assisted tomography. 2001;25(2):287-94.
  16. You SY, Yoon DY, Choi CS, Chang SK, Yun EJ, Seo YL, et al. Effects of right- versus left-arm injections of contrast material on computed tomography of the head and neck. Journal of computer assisted tomography. 2007;31(5):677-81.
  17. Saade C, Bourne R, Wilkinson M, Brennan P. Cardiovascular CTA applications: patient-specific contrast formulae. Proc. of SPIE Vol, 2013. 86731R-1.
  18. Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248(3):995-1003.
  19. Brennan PC, McEntee M, Evanoff M, Phillips P, O'Connor WT, Manning DJ. Ambient lighting: effect of illumination on soft-copy viewing of radiographs of the wrist. AJR. American journal of roentgenology. 2007;188(2):W177-80.
  20. Charbel Saade RB, Mark Wilkinson, Michael Evanoffb,, Patrick Brennan. A reduced contrast volume acquisition regimen based on cardiovascular dynamics improves visualisation of head and neck vasculature with carotid MDCT angiography. European journal of radiology. 2012.
  21. Bath M, Mansson LG. Visual grading characteristics (VGC) analysis: a non-parametric rank-invariant statistical method for image quality evaluation. The British journal of radiology. 2007;80(951):169-76.
  22. McDermott S, Otrakji A, Flores EJ, Kalra MK, Shepard J-AO, Digumarthy SR. Should Dual-Energy Computed Tomography Pulmonary Angiography Replace Single-Energy Computed Tomography Pulmonary Angiography in Pregnant and Postpartum Patients? Journal of computer assisted tomography. 2018;42(1):25-32.
  23. Li X, Chen GZ, Zhao YE, Schoepf UJ, Albrecht MH, Bickford MW, et al. Radiation optimized dual-source dual-energy computed tomography pulmonary angiography: intra-individual and inter-individual comparison. Academic Radiology. 2017;24(1):13-21.
  24. Aschoff AJ, Catalano C, Kirchin MA, Krix M, Albrecht T. Low radiation dose in computed tomography: the role of iodine. The British Journal of Radiology. 2017;90(0):20170079.
  25. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32-61.
  26. Sahebjami H. Dyspnea in obese healthy men. Chest. 1998;114(5):1373-7.
  27. Ray CS, Sue DY, Bray G, Hansen JE, Wasserman K. Effects of obesity on respiratory function. Am Rev Respir Dis. 1983;128(3):501-6.
  28. Jenkins SC, Moxham J. The effects of mild obesity on lung function. Respir Med. 1991;85(4):309-11.
  29. Rubinstein I, Zamel N, DuBarry L, Hoffstein V. Airflow limitation in morbidly obese, nonsmoking men. Ann Intern Med. 1990;112(11):828-32.
  30. Bedell GN, Wilson WR, Seebohm PM. Pulmonary function in obese persons. J Clin Invest. 1958;37(7):1049-60.
  31. Bass AR, Fields KG, Goto R, Turissini G, Dey S, Russell LA. Clinical Decision Rules for Pulmonary Embolism in Hospitalized Patients: A Systematic Literature Review and Meta-analysis. Thrombosis and haemostasis. 2017;117(11):2176-85.
  32. Milà M, Bechini J, Vázquez A, Vallejos V, Tenesa M, Espinal A, et al. Acute pulmonary embolism detection with ventilation/perfusion SPECT combined with full dose CT: What is the best option? Revista Española de Medicina Nuclear e Imagen Molecular. 2017;36(3):139-45.
  33. Takx RA, Henzler T, Schoepf UJ, Germann T, Schoenberg SO, Shirinova A, et al. Predictive value of perfusion defects on dual energy CTA in the absence of thromboembolic clots. Journal of Cardiovascular Computed Tomography. 2017;11(3):183-7.
  34. Piechowiak EI, Peter J-FW, Kleb B, Klose KJ, Heverhagen JT. Intravenous iodinated contrast agents amplify DNA radiation damage at CT. Radiology. 2015;275(3):692-7.
  35. Kuefner M, Brand M, Engert C, Schwab S, Uder M. Radiation induced DNA double-strand breaks in radiology. RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 2015. © Georg Thieme Verlag KG: 872-8.
  36. Sahbaee P, Segars WP, Marin D, Nelson RC, Samei E. The effect of contrast material on radiation dose at CT: part I. Incorporation of contrast material dynamics in anthropomorphic phantoms. Radiology. 2017;283(3):739-48.
  37. Sahbaee P, Abadi E, Segars WP, Marin D, Nelson RC, Samei E. The Effect of Contrast Material on Radiation Dose at CT: Part II—A Systematic Evaluation across 58 Patient Models. Radiology. 2017:152852.
  38. Laqmani A, Kurfurst M, Butscheidt S, Sehner S, Schmidt-Holtz J, Behzadi C, et al. CT Pulmonary Angiography at Reduced Radiation Exposure and Contrast Material Volume Using Iterative Model Reconstruction and iDose4 Technique in Comparison to FBP. PLoS One. 2016;11(9):e0162429.
  39. Kerl JM, Lehnert T, Schell B, Bodelle B, Beeres M, Jacobi V, et al. Intravenous contrast material administration at high-pitch dual-source CT pulmonary angiography: test bolus versus bolus-tracking technique. Eur J Radiol. 2012;81(10):2887-91.
  40. Damm R, Mohnike K, Gazis A, Rogits B, Seidensticker M, Ricke J, et al. Improvement of Contrast Media Enhancement in CTA Evaluating Pulmonary Embolism by Utilizing ‘Delayed’Bolus Tracking in the Descending Aorta. Polish journal of radiology. 2016;81:422.
  41. Zapala MA, Zurakowski D, Lee EY. Comparison of mechanical versus hand administration of IV contrast agents for pediatric pulmonary CT angiography. American Journal of Roentgenology. 2017;208(3):632-6.
  42. Mourits M, Nijhof W, van Leuken M, Jager G, Rutten M. Reducing contrast medium volume and tube voltage in CT angiography of the pulmonary artery. Clinical radiology. 2016;71(6):615. e7-. e13.

Comments & Peer Review


Must Read